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We propose a statistical methodology to quantify the 
financial implications of tropical cyclone-related physical 
risks implied by climate change.  To address the sensitivity 
of  disaster  intensity  to  climate  change,  we  provide  a  
Monte  Carlo  methodology  to generate synthetic cyclones 
consistent with climate scenarios of the Couple Model 
Intercomparison Project (CMIP5).  Sovereign exposure and 
vulnerability assessments in principal  tropical  cyclone  
basins  are  based  on  projections  of  population  densities  in 
shared  socioeconomic  pathways  coupled  with  downscaled  
physical  asset  values  constructed  using  mixed  data  along  
with  locally  calibrated  damage  functions.   Finally, we 
compute the direct climate impact on emerging countries’ 
bond spreads using the spread sensitivity to the debt to 
GDP ratio, assuming that damage costs are financed by 
issuing new government debt. We find that the ‘business 
as usual’ RCP8.5 concentration scenario coupled with the 
‘middle road’ shared socioeconomic pathway (SSP2) leads 
to global average annual damages 142% larger than in the 
concentration scenario RCP2.6 allowing to remain under 2°C 
warming.  In terms of emerging market impact, we estimate 
that in 2070-2100, the impact of extreme cyclones on the 
bond spread of most vulnerable countries will up to 200 bps 
higher in the RCP8.5 pathway than in the 2°C baseline.  In 
every step of our assessment, we quantify the impact of 
model uncertainty on our results using 7 different climate 
models from the CMIP5 database.
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Pricing Cyclone-Related Physical Risk

1 Introduction

The direct effects of global warming on the planet are unequivocal – melting of glaciers, rising
sea levels, unstable climate conditions, expanding deserts – phenomena that have been com-
prehensively detailed by the Scientific Committee of the Intergovernmental Panel on Climate
Change (IPCC) in their reports (Pachauri et al., 2014; Solomon et al., 2007). However, these
environmental issues are only the tip of the iceberg of the consequences of climate change,
which also encompass the effects of climate change on societies and economies.

The financial implications of climate change fall in two main categories. First, transition
risks and opportunities are the financial consequences of the transition toward a low carbon
economy. A large body of literature describes the transmission channels of transition risk
to the financial markets (Battiston et al., 2017; Battiston & Monasterolo, 2019). On the
other hand, the second type of climate-related risk categorized as ‘physical risk ’ has been
less addressed in the literature. Indeed, if the global effort is too late or insufficient (Jewell
& Cherp, 2020), societies will be threatened by more intense disasters, and financial assets
will suffer greater losses. These risks are particularly hard to apprehend as they will likely
materialize in the long-term and are subject to deep uncertainty.

In this article, our aim is to quantify physical risks at the country level, and assess their
impact on financial markets. We focus on tropical cyclones and model explicitly the four main
dimensions of the problem: (i) the sensitivity of tropical cyclone intensity to climate change,
(ii) the exposure level of the countries to the tropical cyclone risk, (iii) the vulnerability
(amount of losses which may be caused by the tropical cyclone to the exposed assets) and
(iv) pricing of the tropical cyclone risk by the financial markets.

To address the first dimension, we provide a reproducible methodology to generate future
cyclones from climate data inspired by Bloemendaal et al. (2020). We define an integrated
cyclone generator that can be launched on any climate projection from the Phase 5 Cou-
pled Model Intercomparison Project (CMIP5). Regarding the second dimension, to define
countries’ exposure while encompassing the diversity of scenarios proposed in the IPCC
assessment framework, we use multiple sources. We define the current local downscaled
physical asset value exposed to tropical cyclone risk as in Eberenz, Stocker, et al. (2020).
Then, to determine the future physical asset value exposure we apply two correction factors
to the current local physical asset value: a global macroeconomic GDP/population ratio
based on the trajectory defined in Riahi et al. (2017), and a local scenario-based population
distribution based on the grid defined in Jones and O’Neill (2020). The vulnerability dimen-
sion is determined as in Eberenz, Lüthi, et al. (2020) who designed regional specific damage
functions in the CLIMADA project. Finally, to address the market pricing issue, we channel
the expected damages to emerging countries credit spreads by assuming that damage costs
are financed by issuing new government debt and using an econometric model of Hilscher and
Nosbusch (2010) to estimate the impact of debt to GDP ratio on bond spread. Combining
open data sources and methodologies allows us to propose a complete integrated physical
tropical cyclone damage assessment framework with a financial pricing module.

To quantify the model uncertainty of future climate projections, we use a multi-model
ensemble consisting of 7 general circulation models developed by different climatological
centers around the world. This approach allows us to quantify the main sources of uncer-
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tainty in our estimates, namely the natural climate variability (by simulating many years
of synthetic cyclones), the model uncertainty and the socio-economic uncertainty taken into
account through the use of RCP pathways and SSP scenarios.

The methodology of this paper is illustrated in Figure 1. We first construct a synthetic
cyclone tracks database translating the relationship between the scenario-based sea-surface
temperature rise and the change in cyclones intensity. To this end we first define a model of
cyclone genesis, which describes the number of cyclones appearing each year in each basin
(North Atlantic, East, West and South Pacific, North and South Indian). Once initiated, the
cyclones start moving, following the dynamics defined using simple auto-regressive formulas.
The local variables determining the genesis and evolution of cyclones are based on four
statistical equations and one thermodynamic relationship, calibrated on climate data and
historical cyclone tracks.

Figure 1: Framework of cyclone physical risks assessment
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In the second step of our methodology, we define the geographical distribution of sovereign
exposure, in each scenario. We use the framework of the shared-socioeconomic pathways
(SSP) (Riahi et al., 2017). These narratives are used in the IPCC development scenarios and
provide a reference framework for risk assessment. To this end, we use the current downscaled
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physical asset value from Eberenz, Stocker, et al. (2020) and the vulnerability of each region
from Eberenz, Lüthi, et al. (2020). We then determine the projected exposure using local
expansion factor from NASA Socioeconomic Data and Applications Center (SEDAC, Jones
and O’Neill (2020)) and / or global GDP per capita variation factor from Riahi et al. (2017).
We apply a localized damage function to the exposure and aggregate the losses along cyclone
tracks to estimate the loss for each synthetic cyclone.

Finally, we integrate the future cyclones damage cost in the pricing of emerging sovereign
debt. To price the financial consequences of climate change related to tropical cyclones, we
consider that the costs are paid by issuing new government debt and use the sensitivity of the
option adjusted spread to the debt ratio. We use the JP Morgan EMBI Index constituents
to fit our relationship.

In the end, we construct a full financial risk model, based on thermodynamic and sta-
tistical relationships, calibrated on open source climate and socio-economic data. We find
that socioeconomic factors are influential but that climate change has a major impact on
the future potential damage. Using the projections currently available for the time horizon
2070-2100, the representative concentration pathways RCP45 and RCP85 and middle road
shared socioeconomic pathway (SSP2) lead respectively to global average annual damages
76% to 142% higher than in the RCP2.6, concentration scenario allowing to maintain the
global warming below 2°C. In terms of emerging market impact, and by 2070, we estimate
that the maximum annual cyclone-related spread variation for countries within the JP Mor-
gan EMBI Index could increase in high concentration pathways up to 200 bps for most
vulnerable countries with respect to a 2°C baseline.

The paper is structured as follows: after a comprehensive literature review in Section 2,
Section 3 details the synthetic cyclone track generation algorithm; Section 4 presents the
scenario-based approach for downscaled exposure and the regional damage functions and
Section 5 presents the implications of physical risks on emerging countries’ bond spread.
A detailed description of the data sources and of the model, as well as some additional
information on the different sources of uncertainty affecting our results are presented in
Supplementary Material.

2 Related Literature

Our choice to focus on cyclones is motivated by the importance of their impact on the econ-
omy and human life, reasons why they have received considerable attention from meteorol-
ogists and academics from several other disciplines. Additionally, it has been demonstrated
that climate change increases the intensity of cyclones in a measurable way. For instance,
using the total dissipation of power integrated over the lifetime of the cyclone, Emanuel
(2005) showed an increase of the intensity index of tropical cyclones over the 30-year period
since the mid-1970s. Recently, Kossin et al. (2020) also demonstrated the increasing trend
of major tropical cyclone threshold exceedance probability. This trend is most clearly ob-
servable in the Atlantic basin (Elsner et al., 2008), but incompleteness of the observations
may explain the difference with the other basins. The current scientific consensus on the
impact of climate change on tropical cyclones was summarized as follows:
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“Future projections based on theory and high-resolution dynamical models consis-
tently suggest that greenhouse warming will cause the globally averaged intensity
of tropical cyclones to shift towards stronger storms, with intensity increases of 2
to 11% by 2100. Existing modeling studies also consistently project decreases in
the globally averaged frequency of tropical cyclones, by 6 to 34%. Balanced against
this, higher resolution modeling studies typically project substantial increases in
the frequency of the most intense cyclones”(Knutson et al., 2010, p. 1).

The impact of climate change on tropical cyclones intensity is thus undeniable. In other
words, super storms are going to be the new norm. However, while the relationship between
the radiative forcing and the evolution of extreme winds is explicitly established in medium
and high-resolution models (Bacmeister et al., 2018; Timmermann et al., 2020; Zarzycki et
al., 2016), the freely accessible global climate projections from coupled model intercompari-
son projects (CMIP) do not include a module resolving cyclones and more generally extreme
events. To fill this gap, we propose to adapt the model of Bloemendaal et al. (2020) to
generate future cyclone tracks under specific representative concentration pathways (RCP).

The literature on cyclone modeling builds upon the seminal contributions by Emanuel
(1988) followed by Holland (1997) and Emanuel (1999). Risk assessments have been devel-
oped from hurricane potential intensity maps to assess the damage in the US and worldwide
(Emanuel, 2011; K. Emanuel et al., 2008). To facilitate cyclone risk assessment, Bloemen-
daal et al. (2020) recently developed a modeling framework to simulate realistic synthetic
tropical cyclone tracks: the Synthetic Tropical cyclOnes geneRation Model (STORM). This
model relies mostly on statistical relationships (DeMaria & Kaplan, 1994; James & Mason,
2005; Kaplan & DeMaria, 1995) and is slightly different from the thermodynamic approach
generally proposed for cyclones intensity index (K. Emanuel et al., 2008). We found that
Bloemendaal et al. (2020) specification lacks parameters describing the variation of the max-
imum potential intensity (MPI) – local energy potential allowing cyclones to grow stronger
– therefore we propose to further detail the thermodynamic definition of this energy po-
tential integrating relative humidity and upper troposphere temperatures. This important
adjustment leads to a more precise modeling of the link between cyclone intensity and cli-
matological variables which in turn enables us to quantify the impact of climate change on
future cyclones by using climate variables from the CMIP5 climate projections.

On the economic side, the assessment of future cyclone damages requires to take into
consideration multiple socioeconomic factors (Noy, 2016; Pielke Jr et al., 2008; Weinkle et
al., 2018; Weinkle et al., 2012; Ye et al., 2020), but also their potential dynamics in the
scenario of interest. For instance, in 2012, the annual damage from tropical cyclones was
USD 26 billion according to the international disaster database (EM-DAT). The value of
the damage went up to reach USD 73 billion in 2020. The cost will naturally increase in
2100, due to rise of both population and wealth concentration in areas subject to cyclones;
in addition, Mendelsohn et al. (2012) showed that climate change will likely increase the
impact by USD 53 billion per year in 2100 compared to the baseline. This quoted paper
uses a single emissions scenario and does not employ the shared socioeconomic pathways
and representative concentration pathways framework to assess the losses. To fill this gap,
we propose to integrate the local scenario-based expansion maps developed by the Socio-
Economic Data Application Center (SEDAC). Moreover, Mendelsohn et al. (2012) provide

10



Pricing Cyclone-Related Physical Risk

highly aggregated results and therefore this paper has no direct financial application. For the
methodology to be valuable in financial applications, we must introduce higher resolution
asset exposure. To this end we employ the downscaled physical asset value database detailed
in Eberenz, Stocker, et al. (2020).

Physical climate risks have not been as well addressed in the financial literature as transi-
tion risks. One reason for this lesser consideration could be that the present value of natural
disasters occurring in the long-term is strongly reduced by a too high effective discount rate,
which is in line with what Carney (2015) called the Tragedy of the Horizons. Although the
issue of including climate change in market prices concerns a growing number of players, the
measurement of damage costs is currently mainly addressed in the insurance market and the
underlying methodologies cannot be readily applied to pricing financial assets. However, we
show in this paper that these methodologies of direct damage measurement can be embedded
as an intermediate step in financial scenario analysis.

Despite the lack of general methodology, practitioners have started to take some physical
risks into consideration. In particular, local exposures to tropical cyclones are already priced,
through the cat-bond market (Bantwal & Kunreuther, 2000; Morana & Sbrana, 2019) and/or
relative spread of the states and local issuers in the municipal bonds markets. For example,
Harvey and Irma clearly impacted the price of the cat-bond when they made landfall in the
United States in 2017. Dimov and Parsons (2021) study the impact of historical cyclone
landfall on the equity performance of manufacturers owning facilities located in the region
affected by a given storm. For U.S. companies, they observed both “a statistically significant
negative pre-landfall drift and a significant positive post-landfall drift”. On the academic side,
Lanfear et al. (2019) also showed that stock markets responded to storm information using
an event study approach. These studies suggest that tropical cyclones are good candidates
for measuring the impact of climate change on portfolios.

At a sovereign level, the macroeconomic literature on sovereign default relies on dynamic
general equilibrium models and on the seminal paper of Eaton and Gersovitz (1981). Re-
cently, Mallucci (2020) proposed to assess the impact of disasters using this framework on
Caribbean sovereign islands. The author finds that disaster risk reduces government’s ability
to issue debt and that climate change further restricts government’s access to financial mar-
kets. The downside of the use of dynamic general equilibrium modeling framework is that it
makes the assessments complex to transpose at a portfolio level. Indeed, to our knowledge,
there is no integrated methodology describing the full transmission channel of the physical
risk to asset prices and allowing to evaluate the physical risk at a portfolio level. To fill this
gap, we propose to apply Hilscher and Nosbusch (2010) econometric specification to estimate
how physical risk affects the option-adjusted-spreads (OAS) of emerging countries through
the impact of direct damage on the debt-to-GDP ratio. Because of the higher vulnerability
of emerging countries, we decide to focus on the constituents of the JP Morgan EMBI Index.

A number of recent articles and reports address the impact of climate change on sovereign
default risk (Beirne et al., 2020; Klusak et al., 2021; Volz et al., 2020). In particular, the
report (Volz et al., 2020) (see Table 4 therein) identifies multiple transmission channels
through which physical and transition climate risks may impact sovereign bond spreads and
default probabilities. Out of these channels, we focus on the fiscal impact of climate-related
disasters, and more specifically tropical cyclones, and provide a methodology for assessing
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the intensity of this impact under future warming and development scenarios. Beirne et al.
(2020), show, through econometric analysis, that climate risk vulnerability and resilience are
already significant determinants of the sovereign bond spreads. The article (Klusak et al.,
2021), which is perhaps closest in spirit to our study, simulates the effect of climate change
on sovereign credit ratings under alternative warming scenarios. Their methodology is based
on a statistical rating prediction model, combined with a macroeconomic growth model to
project the impacts of global warming on GDP. By contrast, our aim is to analyse the
impact of physical risks on sovereign bond spreads directly, by evaluating economic damage
from synthetic future cyclones, without making reference to integrated assessment models.
Indeed, the use of such models to evaluate future climate damages is still sometimes seen as
controversial in the literature (Auffhammer, 2018; Pindyck, 2017).

3 Synthetic cyclone generation model

In this section, we detail the construction of random synthetic cyclone tracks consistent with
different representative concentration pathways.

3.1 Climate and cyclone track data

Training a cyclone generator algorithm requires two types of data: the recorded tracks of past
cyclones and the climate conditions in which these cyclones occurred. Combining the two
allows to extrapolate the relationships between the climate conditions and the probability
and intensity of the cyclones (Figure 2). These relationships, combined with the projections
of future climate, then allow to generate realistic synthetic future cyclones. We employ the
following databases:

• For observed cyclone tracks we use the International Best Track Archive for Climate
Stewardship (Knapp et al., 2010) database (IBTrACS). This database presents the
advantage to provide a standardized report of cyclones worldwide.

Cyclone tracks are reported on a 3 hour basis, with the measured central pressure,
winds and radius to maximum winds. From this database we extract the wind speed,
pressure and coordinate variations of cyclone tracks.

• The past climate data1 is retrieved from ERA5 reanalysis database. We extract
monthly mean sea level pressure (MSLP), monthly mean sea surface temperature
(SST), relative humidity (RH), and tropopause temperature (Ttropo), i.e. temperature
corresponding to atmospheric pressure around 50 hPa.

• To estimate the sensitivity of tropical cyclones intensity to climate change we use the
future climate projections of the Coupled Model Inter-comparison project (Phase 5)
models (Taylor et al., 2012). We use the global climate projections in the climate data
store (CDS), which is a quality-controlled subset of the wider CMIP5 dataset.

1Climate data is available on the Copernicus Climate data store: https://cds.climate.copernicus.eu/.
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Figure 2: Understanding cyclone generator data dependency
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To take into account the potential biases in the climate models, we use models from
multiple climate centers: NASA, Goddard Institute for Space Studies (GISS-E2-H,
USA), Institut Pierre Simon Laplace (IPSL-CM5A-NR, France), Bureau of Meteorol-
ogy - Commonwealth Scientific and Industrial Research Organisation (ACCESS1-0,
BoM-CSIRO, Australia), Beijin Climate Center (bcc-csm1-1-m, China), Institute of
Numerical Mathematics (inmcm4, Russia), Norwegian Climate Centre (NorESM1-ME,
Norway), Canadian Centre for Climate Modelling and Analysis (CanESM2, Canada),
according to the availability of the runs for the configurations of interest. Indeed, while
the seven models are available for the historical period and Representative Concentra-
tion Pathway 8.5W/m2 (RCP85), the CCCMA model is not available for RCP45, and
only the IPSL, CCCMA, NCC and BCC models climate projections are available for
RCP26. The different runs (r) of each models are derived from different initial con-
ditions (i) and different physical parameters (p). These three parameters define the
ensemble. The difference between ensembles is characteristic of the internal variabil-
ity of the model. We use the ensemble ‘r1i1p1’ because it is available for the largest
number of models in the configurations studied.
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3.2 Cyclone generation model

Our model follows Bloemendaal et al. (2020) with some important adjustments. This paper
defines three main modeling steps: genesis, displacement of the eye and calibration of the
cyclone properties. The entire model relies on statistical relationships (DeMaria & Kaplan,
1994; James & Mason, 2005; Kaplan & DeMaria, 1995). This simulation method is slightly
different from the purely thermodynamic approach advocated by Kerry Emmanuel models
(Emanuel, 1999; K. Emanuel et al., 2008).

The main difference in our specification compared to Bloemendaal et al. (2020) is that
we use a different local definition of maximum available thermodynamic intensity (MPI).
In particular, we use relative humidity and tropopause temperature (50hPa), allowing for
better calibration of cyclone properties. The main goal of this section is to present the
process allowing to generate synthetics tracks properties i.e. maximum wind (V ) and central
pressure (Pc) at each step of coordinates latitude y, longitude x, and time t, given the climate
conditions – sea surface temperature (SST), mean sea level pressure (MSLP), tropopause
temperature (Ttropo), and relative humidity (RH) extracted from climate models.

Cyclone genesis Although in the literature there exist models relating the frequency of
cyclones with the local atmospheric variables such as vertical shear, vertical instability and
mid-level moisture variables (DeMaria et al., 2001; Gray, 1975), there is still too much
uncertainty about how climate change will affect the frequency of cyclones to justify the
integration of multiple additional variables at this step. For this reason, we choose to rely
on a simple model based on past frequencies. The number of synthetic cyclones each year is
therefore determined by the Poisson distribution in each basin, with parameter λ defined as
the average number of cyclones per year in the historical data. In other words, we make an
assumption that the climate change does not affect the frequency of tropical cyclones. Simi-
larly, the temporal and spatial position of synthetic future cyclones (starting month, latitude
and longitude) is generated by resampling the historical distribution of these variables.

Cyclone trajectories A rich literature focuses on cyclone tracking algorithms, and ad-
vanced models have been developed and compared by several authors, see e.g., Neu et al.
(2013). Here, following Bloemendaal et al. (2020), we choose to implement a simple auto-
regressive model for cyclone coordinates. Following James and Mason (2005), the time
evolution of the latitude and longitude of the cyclone center is described by the following
stochastic dynamics:

∆txt = a0 + a1∆txt−1 + εxt (1)

∆tyt = b0 + b1∆tyt−1 +
b2

yt
+ εyt (2)

εxt ∼ N (µx,B, σx,B)
εyt ∼ N (µy,B, σy,B)

Here xt and yt are the latitude and longitude of the cyclone center sampled with a 3 hour
time step; ∆txt = xt − xt−1, ∆tyt = yt − yt−1, εxt and εyt are i.i.d. noises independent from one
another and the constants a0, a1, b0, b1, b2, µx, µy, σx and σy are fitted on the IBTrACS
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data independently for each basin by least squares regression. The non-linear term in the
incremental variation of the latitude is justified as follows:

The empirical evidence is rather compelling for a tendency for cyclones to move
away from the equator—a tendency that is fairly dominant at very low latitudes,
but less strong elsewhere. This tendency can be simulated by adding to the cyclone
latitude model a nonlinear term that provides a steeply increasing tendency for
∆y(t) to be directed southward as the cyclone approaches the equator. [...] The
form chosen here varies inversely with latitude (James & Mason, 2005, p. 183).

This simple auto-regressive model provides acceptable results (R2 > 0.8 and see Figure 3).
We found this formulation sufficient for global financial assessment despite its lack of con-
sideration for dependencies in the latitudinal and longitudinal variations (James & Mason,
2006).

Figure 3: Synthetic databases generated with ERA-5

Note: Samples of storms modeled based on ERA-5 reanalysis between 1970-2000.

Cyclone intensity The intensity of cyclones in our model is defined through the following
five steps:

1. We describe the cyclone intensity through its central pressure P c
t . Let Vt be the max-

imum 10-min sustained wind speed of the cyclone at time t (this variable is reported
in IBTrACS dataset for historically observed cyclones). The wind-pressure relation-
ship (WPR) is defined in Bloemendaal et al. (2020) for the whole cyclone database as
follows:

Vt = a ⋅ (MSLP(xt, yt, t) − P c
t )
b

(3)
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where MSLP(x, y, t) is the mean sea level pressure at this time and location. This
statistical approach mimics a first order estimation of gradient flow / hydrostatic equi-
librium2.

2. In the second step, we compute the local maximum potential intensity (MPI) following
Holland (1997) and using thermodynamic relationships. This step differs from the spec-
ification of Bloemendaal et al. (2020). Our approach takes into account the additional
energy potential due to the widening of temperature difference between sea surface and
upper troposphere3. Following the theory of Emanuel (1988) and additional simplifica-
tions proposed in subsequent papers (Emanuel, 1991) summarized in Holland (1997),
the thermodynamic version of the MPI definition in our model becomes:

MPIt = MSLP(xt, yt, t) ⋅ e−Xt (4)

Xt =
Et ⋅ SST(xt, yt, t) ⋅∆Smt −

f(yt)2r2
env

4
Rd ⋅ SST(xt, yt, t)

Et = SST(xt, yt, t) − Ttropo(xt, yt, t)
SST(xt, yt, t)

∆Smt = Rd ln(MSLP(xt, yt, t)
P c
t−1

) + Lυ(q
⋆

c t − qenvt )
SST(xt, yt, t)

q⋆c t = 3.08 ⋅RHc

P c
t−1

exp(17.67 (SST(xt, yt, t) − 273.15)
SST(xt, yt, t) − 29.65

)

qenvt = 3.08 ⋅RH(xt, yt, t)
MSLP(xt, yt, t)

exp(17.67 (SST(xt, yt, t) − 273.15)
SST(xt, yt, t) − 29.65

)

where SST(xt, yt, t) and Ttropo(xt, yt, t) are respectively the sea-surface and tropopause
(i.e. at 50 hPa or at an altitude of 20 km) temperatures, MSLP(xt, yt, t) is the mean
local sea level pressure, RH(xt, yt, t) is the relative humidity, f = 2ω sin(yt) is a Coriolis
parameter depending on the latitude, renv is the distance between the eye and the area
under regular conditions (fixed at 500km), qenv and qc respectively are the specific
humidity at environmental conditions and in the eye. ∆Sm is the difference of moist
entropy between the environment and the storm center. We suppose RHc = 1. All the
variables and constants are given with their respective units in the Appendix A on
page 43.

3. To prevent the depression from diverging, we cap it by the maximum pressure drop,

2See Chavas et al. (2017) and Knaff and Zehr (2007) for further details.
3Indeed, greenhouse gas emissions not only warm up the oceans, but also cool down the lower stratosphere.

Quoting from (Butchart et al., 2000):“In the southern winter stratosphere the flux of wave activity from the
troposphere increased, but any additional dynamical heating was more than offset by the extra radiative
cooling from the growing total GHG concentration”. The effects of anthropogenic emissions in general
including ozone (Forster et al., 2007) therefore converge toward a cooling effect of low stratosphere / upper
troposphere (Ramaswamy et al., 2006).
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as function of the sea surface temperature:

P c
t ∶= max(P c

t ,MSLP(xt, yt, t) −MPD(SST(xt, yt, t))),

where the maximum pressure drop function is given by the following equation:

MPD(SSTb) = A +B ⋅ eC(SSTb(xt,yt,t)−T0), T0 = 30.0oC, (5)

which is fitted for each basin using the historical tracks and ERA5. This relationship
is illustrated in Figure 4.

Figure 4: Sea-surface temperature max pressure drop relationship
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4. The evolution of the central pressure depending on local MPI is described by the
following autoregressive stochastic dynamics (James & Mason, 2005):

∆tP
c
t = c0 + c1∆tP

c
t−1 + c2e

−c3[P
c
t −MPIt] + εP c

t ,t
(6)

εP c
t ,t

∼ N (µP c , σP c)

where the distance to maximum potential, P c
t −MPIt, enters as a non-linear term in

the dynamic definition of the central pressure “providing an increasing tendency for
∆p to be positive as the central pressure approaches the mean MPI for the cyclone’s
location ”(James & Mason, 2005, p. 183). The parameters are fitted on historical data
using nonlinear least squares. This relationship channels the effect of global warming,
affecting the maximum potential intensity, on the cyclone intensity. In other words, the
incremental variation of the central depression of the cyclone is linked to the difference
between the central pressure at time t and the potential available in the environment.
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5. In the last step, we model the evolution of the cyclone after landfall. We fitted the
decay function for each basin considering that “Tropical cyclone intensity decreases as
a function of the time and distance the tropical cyclone has covered whilst being over
land”(Kaplan & DeMaria, 1995):

VtL = Vb + (R ⋅ V0 − Vb)e−αt −m(tL)(ln
Dl

D0

) + b(tL) (7)

= V (tL,Dl, V0)

where Dl is the distance to coast, V0 is the wind at landfall and tL the time spent on
land by the eye.

Figure 5: Decay of a cyclone making landfall with wind speed of 30 m/s (or 108km/h). This
surface is obtained with the parameter fitted on IBTrACS data. This relationship is used
after 3 time steps.
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The function represented Figure 5 was fitted on IBTrACS using non-linear least squares.
In our procedure, we use the global parameters: R = 0.79, Vb = 15 m/s, α = 0.044h−1,
and m(tL) = c̃1tL(t0,L − tL), c̃1 = 3.35.10−4ms−1h−2 , tL = 172h, b = d1tL(t0,L − tL),
d1 = −0.00186ms−1h−2 and D0 = 1. The example provided on Figure 5 shows how a
cyclone with a wind speed at landfall of 30 m/s rapidly decays over land.

The full cyclone track generator Algorithm 1 is presented on page 45. The cyclone
wind speed is initiated at 20 m/s and the initial pressure is determined from the WPR
Equation (3). While the cyclone is over sea, the pressure evolution ∆tPc is determined from
the dynamic Equation (6) based on the local MPI. To prevent the model from producing
unrealistically low central pressure, we cap the maximum pressure drop using Equation (5).
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While the cyclone is over sea, the wind is defined with the Equation (3). When the cyclone
arrives on land the MPI is computed from the last known climate variables for three steps
and the pressure keeps following the same relationship (6). After three steps (9h) on land,
we start applying the decay relationship – Equation (7) – to define the wind. The variations
of longitude and latitude are always defined using Equation (1) and Equation (2). We force
cyclones to remain in their genesis basins in this exercise.

3.3 Generation of synthetic cyclones in representative concentra-
tion pathways

The properties of the cyclones are similar when this algorithm is used with CMIP5 cli-
mate data over the historical period (1980-2000). We use the following climate models:
NASA GISS-E2-H (USA), IPSL-CM5A-NR (IPSL, France), ACCESS1-0 (BoM-CSIRO, Aus-
tralia), bcc-csm1-1-m (BCC, China), inmcm4 (INM, Russia), NorESM1-ME (NCC, Norway),
CanESM2 (CCCMA, Canada). The depression profiles simulated over the historical period
are similar among the models (see Figure 6). The distribution of CMIP5 output is defined
as the aggregation of outputs of all models.

Figure 6: Synthetic depression distribution in (CMIP5) models per basin over the historical
period (1980-2000)
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To measure to sensitivity of tropical cyclones to climate change we introduce the repre-
sentative concentration pathways (RCPs) corresponding to the radiative forcing 2.6W/m2,
4.5W/m2 and 8.5W/m2 between 2070 and 2100. The synthetic cyclones were generated us-
ing RCP scenarios for the period between 2070 and 2100, where today’s action starts making
a significant difference.
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To focus on the main variable of interest Figure 7 compares the distributions of maximum
winds from the synthetic tracks obtained with the same climate models over the periods 1980-
2010 and 2070-2100 (with RCP85 pathway). An increase in cyclone intensity is clearly visible.
For instance the average increase in the RCP45 and RCP85 compared to the historical data
is respectively 9.5% and 13.5%, which is in line with the literature (Knutson et al., 2010).

Figure 7: Tropical cyclone maximum wind sensitivity to climate change

(a) Comparing cyclones observed, generated with reanalysis
and climate models maximum wind (m/s)
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(c) Statistics of simulated wind

Mean St. dev Median 1st Qu. 3rd Qu. Max.
Historical 50,4 9,3 50,4 43,7 56,6 81,6
RCP26 52,0 9,4 52,1 45,2 58,6 80,5
RCP45 55,2 10,5 55,2 48,0 62,5 90,5
RCP85 57,2 11,3 57,4 49,5 64,9 96,2
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4 Sovereign exposure and vulnerability

In Section 3 we produced synthetic tracks translating both probability and intensity of the
future tropical cyclones. In this section, we model asset exposures in multiple narratives and
we introduce vulnerability curves to estimate the fraction of the value lost. This section is
inspired by the literature associated to the CLIMADA project,4, which we combine with the
future GDP and population projections.

4.1 Sovereign asset exposure

Current asset exposure To define the present-day physical asset exposure, we use the
distribution of physical asset values on a high-resolution (30 arc-second) grid, estimated
using a combination of nightlight intensity, population data, and global country indicators
(Eberenz et al., 2019, 2020). To illustrate this database, we display the local exposure in the
major basins on Figure 8. We define the variable LP as the physical asset value exposed –
defined with a 30 arc-second resolution – and re-aggregated on a one-eighth degree grid.

Figure 8: Physical asset values (in USD million per 1/32 degree)
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Source: Eberenz, Stocker, et al. (2020)
Maps used in the assessment are obtained by summing the 30 arc-second (∼ 1/120°) on tiles proportional to cyclone radius. In
this Figure, we aggregated asset value on 1/32° grid.

4Source code and data are available on GitHub at: https://github.com/CLIMADA-project/climada
python/releases/tag/v1.5.1.
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Macroeconomic narratives The future exposure is sensitive to the scenarios of popula-
tion growth and economic development. To take this into account, we use the framework
of the shared-socioeconomic pathways (SSP) (Riahi et al., 2017). These narratives are used
in the IPCC development scenarios and provide a reference framework for risk assessment.
Figure 9 displays the scenario-based projections of GDP and population in the five SSP, at
the world level by the IIASA model5. We recall that the middle road pathway (SSP2) is
used as the reference in most scenario analyses. It is an optimistic but plausible baseline in
terms of economic and social resiliency, in which urbanization level is high and GDP and
population are constantly increasing. On the other hand, the rocky road pathway (SSP3)
presents totally different properties: decreasing GDP with strong increase of the population.

Scenario-based exposure metric To estimate future exposures along the cyclone track
in each scenario, we use the downscaled estimation for the exposed wealth and the coefficients
representing the change between the current state and the future scenario. The local physical
exposure at the coordinates (x, y) at time t in a region j in scenario k is defined as follows:

Φ(x, y, j, k, t) = F cap
GDP(j, k, t)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Global macro factor

⋅Fpop(x, y, k, t) ⋅LP (x, y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Local factor

. (8)

This scenario-based exposure indicator is defined on a 30 arc-second grid.

The factor FGDP is the projected GDP per capita growth for each region:

F cap
GDP(j, k, t) = GDP(j, k, t)/GDP(j, t = 2020)

P (j, k, t)/P (j, t = 2020) (9)

where P is the total population of the region. We use the most granular projections of GDP
per capita variation curves (Figure 19 on page 46).

The factor Fpop is defined as follows:

Fpop(x, y, k, t) = p(x, y, k, t)
p(x, y, t = 2020) (10)

where p(x, y, k, t) represents the local projections of population, available from the SEDAC
database (Jones & O’Neill, 2020) with a one-eigth degree resolution. Figure 10 represents
this multiplicative factor in the SSP2 (10a), SSP3 (10b), SSP4 (10c) and SSP5 (10d) in 2100.

4.2 Physical vulnerability

Explicit functions The relationship between the wind speed and the fraction of losses
has been determined empirically from historical data using explicit damage functions of
several forms. Prahl et al. (2019) compare these functions and describe their mathematical
specification, extending their use to other natural hazards (Prahl et al., 2016). Generic
exponential functions for economic damage were used in Weitzman (2010) while Nordhaus
(1993) used power law functions. However, the calibration of the function parameters on

5Variables relative to SSPs are available here: https://tntcat.iiasa.ac.at/SspDb/.
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Figure 9: World GDP and global population variation
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Source: Riahi et al. (2017). This figure gives the global trends for GDP and population variation from 2020 to 2100. The
regional projections of ∆t,kycap(y, k, t) (see Equation (9)) are given on Figure 19 in the Appendix on page 46.

Figure 10: Variation of population exposure in 2100
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The scenario-based population grid generation is detailed by Jones and O’Neill (2020) with a last version downscaled at 1km
following Gao (2020). This population grid is available every 10 years. We use the closest value in the definition of the
exposure.
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relevant data and the definition of their domain of validity is more important than their
specific form.

Cyclone damages are generally assessed using a cubic functional of the wind speed, which
corresponds to the intensity of the storm. For example, Pinto et al. (2012) studied the future
loss potential in Europe using this type of formulation. To estimate the fraction of loss from
a storm with sustained wind speed V , Emanuel (2011, p. 264) introduced the following
formula:

f(V, vjh) =
(max(V − v0,0))3

(vjh − v0)3 + (max(V − v0,0))3
(11)

where f is the fraction of the property value lost, v0 = 25.7 m/s and vjh a parameter that
needs to be calibrated for each region j.

Figure 11: Fraction of property value lost as a function of winds speed
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Using Equation (11) with vj
h
= 50 (red), 74.4 (dark blue) and 100 m/s (light blue).

Regional damage functions Using the reported damage estimates by the International
Disaster Database (EM-DAT) (Guha-Sapir et al., 2018) crossed with cyclone tracks (IB-
TrACS), and geographic and socio-economic information along these tracks, Lüthi (2019)
refined this approach using machine learning techniques. The aim to better describe local
vulnerability and adaptation capacities. The CLIMADA module implements this approach
(Aznar Siguan & Bresch, 2019; Bresch, 2017), filling the gap between bottom-up and top-
down assessment. Based on this module, Eberenz, Lüthi, et al. (2020) introduced region-
specific damage functions, that is used in the rest of this paper (see Figure 12). The functions
were also calibrated on the downscaled physical asset exposure database (Eberenz, Stocker,
et al., 2020) previously introduced, which ensures the consistency of the assessment.

Damage along tracks The simulated damage for a given cyclone – in both IBTrACS and
our synthetic tracks – is computed using the following three-step algorithm.
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Figure 12: Regional Damage Functions
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Source: Eberenz, Lüthi, et al. (2020). WP4: North West Pacific corresponds to Japan, South Korea, Macao, Hong-Kong, and
Taiwan.

• First, a uniform grid with step given by the average cyclone radius is defined on the
map of affected area. The cyclone track is linearly interpolated, and the tiles affected
by the cyclone (containing a part of the interpolated path) are identified.

• Second, for each tile identified in the previous step, we retrieve the maximum wind
speed V , and compute the proportion of wealth lost f(V, vjh) using the relation (11)
with the parameter given in Eberenz, Lüthi, et al. (2020).

• In the last step we compute the total simulated damage by aggregating the scenario-
based downscaled exposure multiplied by the proportion of wealth lost on each tile
over all tiles affected by the cyclone.

As a result of this algorithm, we obtain the total simulated damage SEDi(j, k, t) caused by
the i-th cyclone in region j for scenario k, simulated with climate variables for year t.

Finally, the cyclone damage cost in region j for scenario k and year t is simulated as
follows:

D(j, t, k) =∑
i

SEDi(j, k, t), (12)

where the sum is taken over all cyclones occurring in a given year. This procedure can then
be repeated many times to obtain the distribution of annual cyclone damages and compute
other statistics such as the mean and quantiles of this distribution. Figure 13 provides an
illustration of this process with Katrina (2005). Figure 13a represents the path of this storm
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on high resolution physical asset value mapping. Figure 13b presents the aggregated values
of physical exposure on larger resolution grid. This allows us to simplify the process in place
in the CLIMADA module which is adapted in the context of a global sovereign exposure
assessment.

Figure 13: Damage along track: example of Katrina (2005)
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Results First, the historical annualized average damages were simulated with the current
physical asset values and past climate data (see Figure 14). Over this period, the average
annual damage was USD 53 billion, to compare with the 2020 annual cyclone damage cost of
USD 73 billion worldwide. The maximum simulated annualized damage of USD 175 billion is
consistent with the observed records. For instance, the total damages for the year 2005, after
the tropical cyclone Katrina, where estimated at USD 181.6 billion. Our damage modeling
specification thus provides estimations of the right order of magnitude for global annualized
damage.

Future damage projections are sensitive to the scenario-based economic growth and pop-
ulation distribution. Figure 14 highlights that economic growth plays a key role in the
expression of damage. By construction of the exposure indicator Φ(x, y, j, k, t), the scenar-
ios in which the local impacted wealth increases the most are the scenarios with highest
annualized damage. On the other hand, these results must be interpreted with caution. For
example, one could question the consistency of the average annualized damage in the SSP5.
Indeed, the two main dimensions used for shared socioeconomic pathways are adaptation and
mitigation. The SSP5 corresponds to little mitigation, i.e. high mitigation challenge, but
also high adaptation, i.e. low adaptation challenge. Therefore, annualized damage estimates
in the SSP5 without considering adaptation may not be particularly relevant in this case.
Our assessment can however be used to calibrate adaptation measures, in a context where
the mitigation challenges are higher than those of adaptation.

By 2070, in the RCP26 and the SSP2, the damage almost doubles compared to the
historical period, despite limited global warming. This increase is due to socioeconomic
factors (see Figure 9). Figure 14 suggests that over the period 2070-2100, the representative
concentration pathways RCP45 and RCP85 and middle road shared socioeconomic pathway
(SSP2) lead respectively to global average annual damages 76% to 142% higher than in the
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Figure 14: Global average annualized damage in SSPs (in billion USD)
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RCP2.6, which is the concentration scenario allowing to maintain the global warming below
2°C. In addition, the relative proportions between RCPs are similar over SSPs. Table 1 shows
that the whole distribution of damage over representative years is affected and simulated
maximum values also increase sharply. In line with the wind distribution observed on Figure
7 on page 20, the distribution of damage is likely to expand, which is emphasized further by
socio-economic factors.

Table 1: Simulated annualized damage statistics between 2070-2100 (in USD billion)

Climate
conditions

Scenario Mean St. dev Median 1st Qu. 3rd Qu. 99th percentile

1980-2000 Historical 53 34 44 35 57 146

RCP26

SSP2 76 144 29 9 84 468
SSP3 52 96 21 7 59 305
SSP4 57 121 18 5 58 379
SSP5 136 269 45 15 144 895

RCP45

SSP2 134 210 68 22 166 727
SSP3 92 136 49 17 114 466
SSP4 98 172 43 13 112 599
SSP5 244 416 111 35 300 1388

RCP85

SSP2 184 278 83 26 233 1013
SSP3 124 181 60 20 157 633
SSP4 136 227 53 16 166 792
SSP5 341 545 144 43 417 1975

Table 1 shows the statistics of climate variability, i.e. distributions of damage obtained
over the representative years simulated over the different concentration scenarios. Results re-
ported in Table 1 are subject to many limitations and rely on multiple modeling assumptions.
For instance, the physical asset value sensitivity to the projected GDP per capita growth
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factor might not be linear and adaptation pathways will most likely strongly mitigate the
expected damages in the SSP5. In addition, the grid resolution and physical exposure dis-
crete aggregation technique could be improved by a precise dynamic modeling of the cyclone
radius as in Bloemendaal et al. (2020). Wind fields could be introduced over geolocated as-
set maps using Holland (1980) similarly as in the CLIMADA module. However, the general
framework is robust, and the proposed methodology could be generalized to any physical
hazard, and geolocated assets after minor adjustments.

Another major source of uncertainty is the climate model used. The models produce
substantially the same depression profiles on the historical period (see Figure 6) however
they provide divergent projections of future climate. Figure 15 shows that different mod-
els produce highly different results. On this sample, in appears that the climate models
BCC-CSM1-1-M and IPSL-CM5A-MR are the best suited to assess cyclone damages in con-
centration scenarios because of the availability of the data in each configuration and the
consistency of the results with the historical period and the socioeconomic dynamics factors.

Figure 15: Climate models uncertainty in global average annualized damage simulation
(billion USD). Each box is built on 250 representative years based on climate conditions
projected on the period 2070-2100 by the corresponding climate models (except INM with
100 years).
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At the country level, distinguishing damage sensitivity to climate change from other
sources of uncertainty requires launching the model on a large number of representative
years. The larger the country, the more accurate the assessment. For small countries, the
model is sensitive to the occurrence of a cyclone landfall in the scenario simulated. Figure 16
shows the impact of climate change on a subset of emerging countries. Figure 16a presents
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the average over each representative years, and Figure 16b presents the distributions of
annualized cyclone-related damage in our simulations. The damages are similar regardless
of the climate scenario for countries like the Philippines because of their high resiliency (see
damage function WP2 on Figure 12), however we note a sharp increase in both average
damage and outliers, i.e. extreme events. To conclude, at a country level, it appears clear
that climate change has an effect on future annualized damage on average, but the real risk
will most likely come from outliers increasingly frequent in higher concentration scenarios.

Figure 16: Example of emerging countries average damage (billion USD)
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(b) Distribution of damages
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We use the SSP2 economic pathways results over all climate models. The annualized damage are averaged over more than 400
representative years in the RCP26, RCP45 and RCP85 between 2070 and 2100. In this Figure 16b we caped outliers at USD
400 billion for visualisation.
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5 Impact of tropical cyclones on sovereign bond spreads

under future climate conditions

In this section, we study the impact of cyclones on the exposed economies because of their
higher vulnerability. A particular attention will be dedicated to emerging economies. We
proceed in two steps. First we analyze how physical risks have affected the sovereign yields –
bond returns and local currency valuation – of developing countries in the past. To this end,
we study the behavior of financial variables around catastrophic events. In the second step,
we use an econometric model to relate the spread of sovereign bonds to the scenario-based
distributions of damage developed in Section 4.

5.1 Market integration of physical risks

Data To measure the impact of cyclones on the financial markets we extracted the bid
prices of Treasury bonds (10 year and 3 months yields) and local currency valuation from
Reuters Refinitiv and Bloomberg. We also tested the impact on 5 year credit default swaps
(data source: Bloomberg). We use the dated disasters (when the start and end dates are
known precisely) from EMDAT database6. To extend the database we use all types of natural
disasters rather than just tropical storms. The database contains 496 dated events with costs
above a USD 1 billion, 50 events with costs above USD 10 billion, 7 events with costs above
USD 50 billion, and 2 events with costs above USD 100 billion from 1900 to 2021. Our aim
is to quantify the impact of such events on financial markets, between 2000 and 2021.

Event study methodology Lanfear et al. (2019) showed that stock markets do respond
to storm information using and event study approach. Recently, Dimov and Parsons (2021)
analyzed the impact of historical cyclone landfall on the equity performance of manufacturers
using a similar framework. From a sovereign perspective, in particular in emerging markets,
low liquidity should mitigate market anticipation during cyclone formation (pre-landfall).
The impact we seek to measure is the potential market meltdown after accounting for all the
damages. Therefore, as a first approach to quantify the impact of natural catastrophes on
sovereign markets, we perform an event study analysis on a 30 days window around the event
end date, when total damage are observed. In absolute terms, for the given damage threshold
value, for example USD 50 billion, we define the set of events affecting each country, in this
case five events (see Figure 17). In relative terms, we normalized the events damage by the
GDP of the country (D(t)/GDP) and study the 100 most important events. For each event,
we estimate abnormal the return it generates, using two approaches:

- With the constant mean approach, we compare the variation observed during the
period with the averaged variation before the cyclone events:

ARj,t = rj,t∈[τ,τ+w] − rj,t∈[τ−w,τ] (13)

where rj,t∈[τ−w,τ] is the average variation of the variable of interest (for instance yields
or currency variation) and rj,t∈[τ,τ+w] is the variation observed after the event.

6https://public.emdat.be/data.
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- With the the market model approach, we compare the returns observed during the
periods with the estimated returns of the financial security based on a CAPM-like
model:

ARj,t = rj,t∈[τ,τ+w] − α̂j,t∈[τ−w,τ] − β̂j,t∈[τ−w,τ]Mr,t∈[τ,τ+w] (14)

where the r is the variation of market price variable (e.g. Treasury bonds price),
α̂j,t∈[τ−w,τ] and β̂j,t∈[τ−w,τ] are the coefficient of the CAPM model fitted on the period
before the events and Mr,t∈[τ,τ+w] is the time series of the market index variation after
the event. Using a market model allows us to capture general fluctuations unrelated
to country specific factors that can occur during the same period.

This methodology is very sensitive to the size of the estimation window and to the choice of
the country. For yields or currency we will use the model based on constant mean correction
(Equation 13). For bond price returns we will use the correction based on estimated returns
(Equation 14), where the market returns are defined using 10 years U.S. bonds.

Impact on yields Over the 100 most damaging events relatively to the GDP of impacted
countries, we find 55 matches with a series of daily 10 years yield variation suggesting an
average 5 bps rise in emerging market bond yields (See Figure 20a on page 46). In absolute
terms, the most extreme events are also the most impacting. For instance, considering dated
events with cost over USD 50 billion restricts the database to the following five events:
Tohoku, the Japanese earthquake and Tsunami (JP-2011-03-11) causing Fukushima, tropical
cyclones Katrina (US-2005-09-19), Harvey (US-2017-08-29) and Maria (US-2017-09-28), and
the Chinese Sichuan earthquake (CN-2008-05-12). The individual effects of these disasters
on the cumulative variations of 10 year bond yields of the impacted countries are shown in
Figure 17. This figure suggests that these events raised the cost of borrowing in the following
months by 20 bps for affected countries7.

When restricting the database to the five most impacting events by normalizing the
damage by the GDP of the country impacted we only keep Tohoku and Sichuan earthquakes,
together with tropical cyclone Amphan (IN-2020-05-20), Thailand floods during the 2011
monsoon season (TH- 2011-08-05), or floods in India (IN-2019-09-30). Some catastrophic
events – such as the floods in Pakistan (PK-2010-08-07) or cyclone Ivan passage through
Cayman island (CY-2004-09-12) – could not be included because there are no matching
yields in the database. However ,there is no significant effect for the top five events and the
results obtained using different filtering thresholds are not consistent.

Discussion The procedure described above was performed using several different financial
variables: 10 year Treasury bond yield and market price, 3 months yield, currency valuation,
and 5 year credit default swap. The results found for different instruments are not fully
consistent with each other and depend on the parameters of the algorithm, therefore one
cannot draw robust and general conclusions. However, all results suggest that in the past,
emerging markets reacted to natural disaster by a slight depreciation of local currency,
increase of bond yields and under-performance of the bonds. We also reiterate that the

7The aggregated impact are given Figure 20b.
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Figure 17: Impact on 10 year sovereign yields
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impact of disasters on more liquid stock markets was demonstrated (Lanfear et al., 2019),
therefore physical risks are already priced by the equity markets.

Although in the past, bond market reactions to catastrophic events have been moderate,
climate change is increasing event intensity, which may lead to higher impact in the future.
We showed that with the advent of climate change, annualized damages will grow and may
compromise ability of some countries to pay back their debt. Therefore, in the next section we
focus on default risk and investigate this question using the spread of their USD dominated
bonds with respect to U.S. treasury bonds.

5.2 Cyclones impact on sovereign spreads

In this section, we derive the scenario-based excess spread for each country impacted by
tropical cyclones.

From direct damage to the sovereign debt The first step is to define the transmission
channels from the cyclone damage to the costs of sovereign debt. The damages related to
disasters fall in two categories: the direct physical losses, possibly insured, and the longer-
term economic consequences of the event. For instance, the direct costs of hurricane Katrina
are estimated to USD 125 billion (2005), among which USD 80 billion were covered by
insurance (EMDAT and Swiss Re Group (2020)). The consequences of the cyclone on the
U.S. economic growth, which went down from 4.1% in the third quarter of 2005 to 1.7% in
the fourth quarter before bouncing back to 5.4% in the first quarter of 2006, and on U.S. oil
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production (19% of which was damaged)8 increased this cost further. It is sometimes hard
to define long-term economic impact of the cyclone. For instance, cyclones often destroy
agriculture and live stock, which affects the economy during a longer period. For instance,
hurricanes Irma and Maria in 2017 in Dominica destroyed 100% of agricultural plantations,
while Yassi in Australia in 2011 destroyed 75% of agricultural plantations in the affected
areas.

In general, because of the propagation of damages in the economic system, the longer-
term economic impacts are more complex to estimate. To address this difficulty, Hallegatte
(2008) introduced an input-output framework and defined the economic amplification ratio
(EAR) as the multiplier between direct cost and the total economic damage. For Katrina
this coefficient was estimated to be 1.39. The author suggested that the economic outcomes
of events with direct losses exceeding USD 200 billion could imply total cost twice as large.
In this case, the increase of the cost because of climate change (cf. Table 1) may overwhelm
reconstruction capacity of poorest countries. In our estimation we do not apply an economic
amplification ratio because we consider that the damage reported already takes this effect
into account.

In this section, we develop a simplified approach for assessing the effect of cyclone dam-
age on sovereign credit spread, assuming that the cost of damages is paid by issuing new
government debt. We build a structural econometric model for sovereign spread, including
the debt to GDP ratio as an explanatory variable (Hilscher & Nosbusch, 2010). Assuming
stationarity of model parameters then allows us to evaluate the effect of cyclone damages on
spreads under various climate and economic scenarios.

Sovereign spread model The spread is the difference of yield between a given security
and the risk-free asset i.e. AAA rated bond. In practice, we use the option-adjusted spread
with respect to the U.S. 10 year Treasury bond. The option-adjusted spread (OAS) is
the measurement of the spread adjusted to take into account specific options embedded in
some fixed-income securities. Following Hilscher and Nosbusch (2010), we calibrate a cross-
sectional econometric model for the option-adjusted spread based on annual end-of-year
data:

OASt = α + β1∆Ct + β2Dt + β3VIXt + β4r
10Y
t

+ β5TEDt + β6
Lt

GDPt

+ β7
reservest

GDPt

+ β8Rt + β9Kt + εt. (15)

OAS is the end-of-year option adjusted spread, from from JP Morgan EMBI position report
in BarraOne;

C is the commodity price index, from Reuters Refinitiv;

D is the average duration of the bonds, from JP Morgan EMBI position report in Bar-
raOne;

VIX is the CBOE volatility index, from Reuters Refinitiv;

8https://www.thebalance.com/hurricane-katrina-facts-damage-and-economic-effects-3306023.
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r10Y is the 10 year U.S. Treasury bonds rate, from Reuters Refinitiv;

TED is the difference between the three-month Treasury bill and the three-month LIBOR,
from Reuters Refinitiv;

L refers to the total external debt stocks in USD, from World Bank;

GDP refers to the end-of-year GDP, from World Bank;

reserves are the total reserves including gold, in USD;

R is the credit rating dummy variable (described below);

K is the country dummy variable, described below.

The model covers 74 countries between 2010 and 2020.

We chose to use all the bonds constituting the index, i.e. including multiple bonds per
country per date. Rather that using Hilscher and Nosbusch (2010) fixed effect approach with
our unbalanced panel, we chose to fit a simple ordinary least squares regression including
dummies for ratings and country effects. Table 2 shows the sensitivity of the option adjusted
spread of each bond belonging to the JP Morgan EMBI to macroeconomic and financial
factors following Hilscher and Nosbusch (2010). The model (1) assesses the effect of a
variation of debt/GDP ratio only, the model (2) introduces one rating dummy (splitting
bellow B-), the model (3) introduces additional macro variables and (4) adds country effect
dummies and bond duration9.

In line with Edwards (1986), we find that the debt ratio is significant. More importantly,
we note that β6 is relatively stable over the modeling frameworks implying that the sensitivity
of the spread to a sudden increase of debt ratio does not strongly depend on external nor
idiosyncratic parameters. We find a positive effect of the VIX, and a hardly significant effect
from TED spread. The duration of the bonds is of the expected sign and significant. The
U.S. 10 years return has a negative effect on emerging country spread. This could be linked
to two reasons. First, when the U.S. bond yield increases, investors may be less interested in
emerging markets. Another reason is the positive correlation between Treasury returns and
the dollar index10, and negative correlation between the dollar index and emerging markets
debt. In other words, the USD denominated debt of these countries grows when their local
currency depreciates. Most of these countries are commodity exporters. A positive change
in commodity price index, implies that a country’s exports have become more expensive
relative to its imports (Hilscher & Nosbusch, 2010). Therefore, we expect commodity price
index to reduce sovereign spreads. This is an important channel of diffusion of the risks
towards developing countries less exposed to tropical cyclones. The coefficients of models
(3) and (4) are of the expected sign. Including country effects in (4) we obtain a model
reaching 71.5% of adjusted R2.

9Including bond duration is significant only when controlling by country effect.
10The U.S. Dollar Index (USDX) is an index of the value of the United States dollar relative to a basket

of foreign currencies.
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Table 2: Simple Option-Adjusted-Spread model

Dependent variable:

OAS (bp)

(1) (2) (3) (4)

∆CT −486.681∗∗∗ −467.219∗∗∗

(114.675) (91.876)

Duration 8.639∗∗∗

(1.659)

VIX 17.094∗∗∗ 15.377∗∗∗

(2.510) (2.120)

TED −13.753 −7.395
(113.318) (91.791)

rUS,10Y −9.809∗∗∗ −8.478∗∗∗

(2.199) (1.756)

L

GDP
367.461∗∗∗ 229.629∗∗∗ 336.718∗∗∗ 377.035∗∗∗

(26.060) (21.319) (25.809) (79.759)

reserves

GDP
−244.949∗∗∗ −1,176.650∗∗∗

(41.034) (185.851)

Rating <B- 1,692.843∗∗∗ 1,697.096∗∗∗ 1,391.009∗∗∗

(42.121) (41.011) (36.858)

Countries X

Constant 207.254∗∗∗ 222.600∗∗∗ 1,410.488∗∗∗ 1,521.181∗∗∗

(15.583) (12.732) (330.158) (269.092)

Observations 2,212 1,860 1,832 1,832

R2 0.083 0.509 0.542 0.723

Adjusted R2 0.082 0.509 0.541 0.715
Residual Std. Error 411.571 (df = 2210) 316.591 (df = 1857) 308.258 (df = 1824) 242.855 (df = 1778)
F Statistic 198.832∗∗∗ (df = 1; 2210) 962.874∗∗∗ (df = 2; 1857) 308.792∗∗∗ (df = 7; 1824) 87.609∗∗∗ (df = 53; 1778)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Dropping Argentina in constant in (4)

Cyclone impact on sovereign spreads under representative concentration path-
ways We now use the econometric model developed in the previous paragraph to assess the
impact of tropical cyclones on emerging country bond spreads under relative concentration
pathways. To this end, we make the following simplifying assumptions:

• We assume that the bond spread model parameters remain stable over time;

• We assume that the cyclone damages are financed directly by the government by issuing
new debt, and that other variables of the model are not affected by cyclones;

• We take into account only direct impact of cyclones and not the total economic costs.

For each country j in the JP Morgan EMBI index, we assess the annual bond spread variation
due to cyclone damage, in scenario k for the year t using the following formula:

∆k,tOAS(j, k, t) = β6 ×
D(j, k, t)

FGDP(j, k, t)GDP(j,2020) , (16)

where we recall that D stands for annualized cyclone damage, and FGDP is the GDP growth
factor for the specified country/scenario.

We compare the spread variation defined from damages of the RCP26 baseline, RCP45
and RCP85 to obtain an annualized financial valuation of the cyclone-related physical climate
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Figure 18: Damage cost channeled to excess spread in emerging countries
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risk. In terms of average spread variation on larger emerging countries, we observe little
effect of climate change on the spread of issued securities channeled by the impact on debt-
to-GDP ratio. Ignoring outliers, i.e. focusing on the part of the distribution between 25%
and 75% quantiles, annualized damage has limited impact on individual countries11. This is
consistent with the historical data, as countries are not equally affected each year by tropical
cyclones, and when they are, they develop a resiliency that is reflected in their damage
functions. Therefore, we focused on the extreme event quantiles. Figure 18 represents the
excess cyclone-related spread for a sample of countries for the 75th, 85th, 95th, 98th percentile
and the maximum cyclone related shock observed in the simulations. In this sample, larger
countries excess spreads remain limited (without economic amplification factors). However,
these simulations suggest that the most vulnerable countries in the Caribbean basin are

11This would be to exclude the events studied in Figure 17 for instance.
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clearly exposed to spread increase (up to 200 bps) in case of extreme storm making landfall
in the highest concentration scenarios. One needs to keep in mind that our model assumes a
linear relationship between debt to GDP ratio and bond spread which may not hold for such
extreme damages, which may totally overwhelm the reconstruction capacity of the countries
and lead to their default.

6 Conclusion

This paper proposes a structural framework for assessing the impact of tropical cyclones on
sovereign spreads. We first present a methodology to generate synthetic storms based on
large-scale climate data and show that when used with reanalysis data, our method pro-
duces tracks consistent with historical observations. We then use our method with CMIP5
model projections and show that climate change will increase the intensity and frequency of
extreme events. In particular, the maximum wind speeds will increase in the RCP45 and
RCP85 by respectively 9.5% and 13.5% by 2070-2100. These synthetic tracks have several
applications. The first one is in natural disaster risk management, to calibrate adaptation
measures. For this purpose, the track generation algorithm may be enhanced, for instance,
by including dependency in the latitudinal and longitudinal incremental displacement, cou-
pling with meteorological forecasting model, or including ground topography to model the
cyclone displacement over land. Another major field of application is to climate financial
risk management, where this scenario-based events database can be used to price physical
risk by constructing risk density maps to compute portfolio exposure. This would require to
better define asset-level vulnerabilities.

In the second main section of this paper, we introduce multiple datasets to define and
project sovereign physical asset at risk. In practice, this step can be substituted by corporate
geolocated asset and supply chain data in order to adapt this framework to stress companies
sensitivity to cyclone risks. Concomitantly, the damage functions must be defined and
calibrated so the results can be compared with respect to a plausible baseline scenario.
The main pitfall of this section is the data mining step required to properly calibrate the
functions, which is, despite the regional specification, the major source of uncertainty (see
Figure 8a in Supplementary Material showing the distribution of plausible functions in the
U.S.). Nevertheless, it is possible to calibrate the model such as the aggregated results are
consistent with the historical records. This section’s results suggest that over the period 2070-
2100, the representative concentration pathways RCP45 and RCP85 and middle road shared
socioeconomic pathway (SSP2) lead respectively to global average annual damages 76% to
142% higher than in the RCP2.6, concentration scenario allowing to maintain the global
warming below 2°C. Barro (2006) and Barro and Ursúa (2012) showed that rare disasters
were more impacting for the financial markets. Thus, climate change really represents a
significant risk as it lowers the frequency and sharply increases the disaster intensity.

In the last section, we focus on ways to measure extreme event impact on financial mar-
kets. We performed an event study to measure market reaction during the time windows
around the events. Because of the small number of events, data quality issues and low liq-
uidity of sovereign emerging markets securities, we can hardly draw robust conclusions from
this backward looking exercise. It appears that some financial variables react to cyclones
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damages but the results are too sensitive to parameters. Next, we explore the transmission
channel of the scenario-based damage to JP Morgan EMBI sovereign bond spread by as-
suming that cyclone damage costs are financed by issuing extra external debt. Following
Hilscher and Nosbusch (2010), we build a simple econometric model for the bond spread, and
quantify the excess spread generated by cyclones assuming that there is no economic ampli-
fication ratio. We show that the maximum annual cyclone-related spread change for most
vulnerable emerging countries can increases up to 200bps under future climate scenarios.

As all long-term economic projections, our results are subject to multiple sources of
uncertainty, including climate uncertainty, model uncertainty, damage function uncertainty
as well as different socio-economic uncertainties. Some of these uncertainties are quantified
in the paper using Monte Carlo simulation with different RCP scenarios, different SSP
pathways, and a variety of climate models.
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Lüthi, S. (2019). Applying Machine Learning Methods to the Assessment of Tropical Cyclone
Impacts.

Mallucci, E. (2020). Natural Disasters, Climate Change, and Sovereign Risk. International
Finance Discussion Papers 1291.

Mendelsohn, R., Emanuel, K., Chonabayashi, S., & Bakkensen, L. (2012). The im-
pact of climate change on global tropical cyclone damage. Nature climate change, 2 (3),
205–209.

Morana, C., & Sbrana, G. (2019). Climate change implications for the catastrophe bonds
market: An empirical analysis. Economic Modelling, 81, 274–294.

Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero,
R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., et al. (2013). IMILAST:
A community effort to intercompare extratropical cyclone detection and tracking al-
gorithms. Bulletin of the American Meteorological Society, 94 (4), 529–547.

Nordhaus, W. D. (1993). Optimal greenhouse-gas reductions and tax policy in the ”DICE”
model. The American Economic Review, 83 (2), 313–317.

Noy, I. (2016). The socio-economics of cyclones. Nature Climate Change, 6 (4), 343–345.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ,

R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., et al. (2014). Climate
Change 2014: Synthesis Report. Contribution Of Working Groups I, II And III To
The Fifth Assessment Report Of The Intergovernmental Panel On Climate Change.
Ipcc.

Pielke Jr, R. A., Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A., &
Musulin, R. (2008). Normalized hurricane damage in the United States: 1900–2005.
Natural Hazards Review, 9 (1), 29–42.

Pindyck, R. S. (2017). The use and misuse of models for climate policy. Review of Envi-
ronmental Economics and Policy, 11 (1), 100–114.

Pinto, J. G., Karremann, M. K., Born, K., Della-Marta, P. M., & Klawa, M. (2012).
Loss potentials associated with European windstorms under future climate conditions.
Climate Research, 54 (1), 1–20.

Prahl, B. F., Rybski, D., Boettle, M., & Kropp, J. P. (2016). Damage functions for
climate-related hazards: unification and uncertainty analysis. Natural Hazards and
Earth System Sciences, 16 (5), 1189–1203.

Prahl, B. F., Rybski, D., Burghoff, O., & Kropp, J. P. (2019). Comparison of storm
damage functions and their performance.

Ramaswamy, V., Schwarzkopf, M., Randel, W., Santer, B., Soden, B. J., & Stenchikov,
G. (2006). Anthropogenic and natural influences in the evolution of lower stratospheric
cooling. Science, 311 (5764), 1138–1141.

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fuji-
mori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp,
A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Em-
merling, J., . . . Tavoni, M. (2017). The Shared Socioeconomic Pathways and their

41



Pricing Cyclone-Related Physical Risk

energy, land use, and greenhouse gas emissions implications: An overview. Global En-
vironmental Change, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

Solomon, S., Manning, M., Marquis, M., Qin, D., et al. (2007). Climate Change 2007-the
Physical Science Basis: Working Group I Contribution To The Fourth Assessment
Report Of The IPCC. Cambridge university press.

Swiss Re Group. (2020). Ten Years After Katrina.
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the

experiment design. Bulletin of the American meteorological Society, 93 (4), 485–498.
Timmermann, A., Chu, J.-E., Lee, S.-S., Wengel, C., Stuecker, M. F., & Yamaguchi,

R. (2020). Tropical cyclone response to anthropogenic warming as simulated by a
mesoscale-resolving global coupled earth system model.

Volz, U., Beirne, J., Ambrosio Preudhomme, N., Fenton, A., Mazzacurati, E.,
Renzhi, N., & Stampe, J. (2020). Climate change and sovereign risk.

Weinkle, J., Landsea, C., Collins, D., Musulin, R., Crompton, R. P., Klotzbach,
P. J., & Pielke, R. (2018). Normalized hurricane damage in the continental United
States 1900–2017. Nature Sustainability, 1 (12), 808–813.

Weinkle, J., Maue, R., & Pielke Jr, R. (2012). Historical global tropical cyclone landfalls.
Journal of Climate, 25 (13), 4729–4735.

Weitzman, M. L. (2010). What Is The ”Damages Function” For Global Warming—And
What Difference Might It Make? Climate Change Economics, 1 (01), 57–69.

Ye, M., Wu, J., Liu, W., He, X., & Wang, C. (2020). Dependence of tropical cyclone
damage on maximum wind speed and socioeconomic factors. Environmental Research
Letters, 15 (9), 094061.

Zarzycki, C. M., Reed, K. A., Bacmeister, J. T., Craig, A. P., Bates, S. C., & Rosen-
bloom, N. A. (2016). Impact of surface coupling grids on tropical cyclone extremes in
high-resolution atmospheric simulations. Geoscientific Model Development (Online),
9 (2).

42

https://doi.org/10.1016/j.gloenvcha.2016.05.009


Pricing Cyclone-Related Physical Risk

A Notation

Indices
B Basin
i Cyclone
j Country (or region)
k Scenario
s Generative algorithm step s ∼ (x, y, t)
t Date
sl, tL Step on land
x Longitude
y Latitude
env Environmental standard season/location vari-

able
Variables

C is the commodity price index
D Bond duration land
Dl(xt, yt, t) Distance to land km
D(j, k, t) Simulated cyclone annualized damage USD
f(y) Coriolis parameter (2ωsin(y))
fj Fraction damage ratio
Fpop(x, y, k, t) Population variation (local level)
FGDP (j, k, t) GDP variation (country level)
F cap
GDP (j, k, t) GDP per capita (country level)

GDP(j, k, t) Global Domestic Product USD
L(x, y) Local physical asset value USD
L(j, k, t) Total debt (external) USD
MSLP(xt, yt, t) Mean sea surface pressure Pa (or hPa)
MPD(SSTb) Max pressure drop observed for a given SST Pa (or hPa)
OAS option adjusted spread dbs
P c
t Central pressure Pa (or hPa)
P (j, k, t) Population (country level) number of people
p(x, y, t) local population estimate number of people
q(xt, yt, t) Specific humidity
renv(i, t) Radius to environmental conditions km
RH(xt, yt, t) Relative humidity %
SEDi Simulated damage per cyclone USD
SST(xt, yt, t) Sea surface temperature K
SSTb Temperature rounded to 0.1°C K
Ttropo(xt, yt, t) Tropopause temperature K
Vt Wind speed m/s
Φc(i, j, k, t) Sovereign physical asset exposure USD
xt Longitude along track
yt Latitude along track
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Functions and operators
∆t Variation over time operator (X(t)/X(t-1))
∆k Variation over scenario operator (X(k)/X(k=0))

Parameter
a, b Wind-pressure relationship coefficients
A,B,C SST-MPD coefficients
an AR longitude parameters
bn AR latitude parameters
cn Dynamic pressure variation
µX Mean of the normal distribution fitted on variable X
dn Physical damage parameters
Rd Dry air constant
t0 Year 2020
Lv Latent heat constant
ρ Surface air density
σX Standard deviation of the normal distribution fitted on

variable X
vt Wind threshold (25.7m/s)
vh Wind function hyper parameter calibrated
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B Complementary materials

Algorithm 1: Cyclone Track Generator
Result: Definition of each cyclone trajectory and properties

V (s = 0) = 20 m/s

MSLP−Pc(s = 0) = (V
a
)1/b ∝ Equation (3)

∼ 25 hPa

Pc(s = 0) ∼ 990 hPa

while MSLP−Pc > 0 & V > vm do
Extract D(s) from naturalearth coastlines;

x(s) = x(s − 1) +∆x(s) +N (µx,B, σx,B)
where ∆x(s)∝ Equation (1)

y(s) = y(s − 1) +∆y(s) +N (µy,B, σy,B)
where ∆yt ∝ Equation (2)

MPI(s) = fMPI (y(s), Pc(s − 1),SST(s), Ttropo(s),MSLP(s),RH(s))
fMPI ∝ Equation (4)

Pc(s) = max(Pc(s) +∆Pc(s),MSLP(s) −MPD(s))
MPD ∝ Equation (5) &

∆Pc(s)∝ Equation (6)

V (s) = a (MSLP−Pc(s))b
if on land = TRUE then

sl = sl + 1
end
if sl > 4 then

Compute distance to land D(s) from naturalearth coastlines;

V (s) = Vb + (R ⋅ V0 − Vb)e−αsl −m(tL) (ln D
D0
) + b(tL)

V (s)∝ Equation (7)

end

end
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Figure 19: Regional Fcap factor variation in SSPs IIASA database
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Figure 20: Average impact on 10 year sovereign yields
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Top 100 most costly events matching 55 series. The event time is date end of the event reported by EMDAT the window is 30
days. The series are controlled using constant mean correction.
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